AE 15: Forest classification

Application exercise

In this application exercise, we will

We will use tidyverse and tidymodels for data exploration and modeling, respectively, and the forested package for the data.

Remember from the lecture that the forested dataset contains information on whether a plot is forested (Yes) or not (No) as well as numerical and categorical features of that plot.

glimpse(forested)
Rows: 7,107
Columns: 19
$ forested         <fct> Yes, Yes, No, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes,…
$ year             <dbl> 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005,…
$ elevation        <dbl> 881, 113, 164, 299, 806, 736, 636, 224, 52, 2240, 104…
$ eastness         <dbl> 90, -25, -84, 93, 47, -27, -48, -65, -62, -67, 96, -4…
$ northness        <dbl> 43, 96, 53, 34, -88, -96, 87, -75, 78, -74, -26, 86, …
$ roughness        <dbl> 63, 30, 13, 6, 35, 53, 3, 9, 42, 99, 51, 190, 95, 212…
$ tree_no_tree     <fct> Tree, Tree, Tree, No tree, Tree, Tree, No tree, Tree,…
$ dew_temp         <dbl> 0.04, 6.40, 6.06, 4.43, 1.06, 1.35, 1.42, 6.39, 6.50,…
$ precip_annual    <dbl> 466, 1710, 1297, 2545, 609, 539, 702, 1195, 1312, 103…
$ temp_annual_mean <dbl> 6.42, 10.64, 10.07, 9.86, 7.72, 7.89, 7.61, 10.45, 10…
$ temp_annual_min  <dbl> -8.32, 1.40, 0.19, -1.20, -5.98, -6.00, -5.76, 1.11, …
$ temp_annual_max  <dbl> 12.91, 15.84, 14.42, 15.78, 13.84, 14.66, 14.23, 15.3…
$ temp_january_min <dbl> -0.08, 5.44, 5.72, 3.95, 1.60, 1.12, 0.99, 5.54, 6.20…
$ vapor_min        <dbl> 78, 34, 49, 67, 114, 67, 67, 31, 60, 79, 172, 162, 70…
$ vapor_max        <dbl> 1194, 938, 754, 1164, 1254, 1331, 1275, 944, 892, 549…
$ canopy_cover     <dbl> 50, 79, 47, 42, 59, 36, 14, 27, 82, 12, 74, 66, 83, 6…
$ lon              <dbl> -118.6865, -123.0825, -122.3468, -121.9144, -117.8841…
$ lat              <dbl> 48.69537, 47.07991, 48.77132, 45.80776, 48.07396, 48.…
$ land_type        <fct> Tree, Tree, Tree, Tree, Tree, Tree, Non-tree vegetati…

Spending your data

Split your data into testing and training in a reproducible manner and display the split object.

set.seed(1234)
forested_split <- initial_split(forested)
forested_split
<Training/Testing/Total>
<5330/1777/7107>

Now, save your training and testing data as their own data frames.

forested_train <- training(forested_split)
forested_test <- testing(forested_split)

Exploratory data analysis

Create some visualizations to explore the data! This can help you determine which predictors you want to include in your model.

Note: Pay attention to which dataset you use for your exploration.

This is a plot that explores latitude and longitude - it’s different from anything we have seen so far!

ggplot(forested_train, aes(x = lon, y = lat, color = forested)) +
  geom_point(alpha = 0.7) +
  scale_color_manual(values = c("Yes" = "forestgreen", "No" = "gold2")) +
  theme_minimal()

# add some other plots here!

Model 1: Custom choice of predictors

Fit

Fit a model for classifying plots as forested or not based on a subset of predictors of your choice. Name the model forested_custom_fit and display a tidy output of the model.

forested_custom_fit <- logistic_reg() |>
  fit(_____ ~ ____________, 
      data = __________)

tidy(forested_custom_fit)

Predict

Predict for the testing data using this model.

forested_custom_aug <- _________(forested_custom_fit, new_data = _______)

forested_custom_aug

Evaluate

Calculate the false positive and false negative rates for the testing data using this model.

forested_custom_aug |>
  count(.pred_class, forested) |>
  arrange(forested) |>
  group_by(forested) |>
  mutate(
    p = round(n / sum(n), 2),
    decision = case_when(
      .pred_class == "Yes" & forested == "Yes" ~ "True positive",
      .pred_class == "Yes" & forested == "No" ~ "False positive",
      .pred_class == "No" & forested == "Yes" ~ "False negative",
      .pred_class == "No" & forested == "No" ~ "True negative"
    )
  )

Another commonly used display of this information is a confusion matrix. Create this using the conf_mat() function.

conf_mat(
  forested_custom_aug, 
  truth = forested, 
  estimate = .pred_class
)

Sensitivity, specificity, ROC curve

Calculate sensitivity and specificity and draw the ROC curve.

forested_custom_roc <- roc_curve(forested_custom_aug, 
                                 truth = ____,  # column with truth
                                 _____, # column with y = 1 preds
                                 event_level = _____) # factor level for y = 1

forested_custom_roc
ggplot(forested_custom_roc, aes(x = 1 - ______, y = ______)) +
  geom_path() + # draws line
  geom_abline(lty = 3) + # x = y line
  coord_equal() # makes square

Model 2: All predictors

Fit

Fit a model for classifying plots as forested or not based on all predictors available. Name the model forested_full_fit and display a tidy output of the model.

forested_full_fit <- logistic_reg() |>
  fit(_________ ~ ________, data = _________)

tidy(forested_full_fit)

Predict

Predict for the testing data using this model.

forested_full_aug <- augment(____________, new_data = ________)

forested_full_aug

Evaluate

Calculate the false positive and false negative rates for the testing data using this model.

forested_full_aug |>
  count(.pred_class, forested) |>
  arrange(forested) |>
  group_by(forested) |>
  mutate(
    p = round(n / sum(n), 2),
    decision = case_when(
      .pred_class == "Yes" & forested == "Yes" ~ "True positive",
      .pred_class == "Yes" & forested == "No" ~ "False positive",
      .pred_class == "No" & forested == "Yes" ~ "False negative",
      .pred_class == "No" & forested == "No" ~ "True negative"
    )
  )

Sensitivity, specificity, ROC curve

Calculate sensitivity and specificity and draw the ROC curve.

forested_full_roc <- roc_curve(forested_full_aug, 
                               truth = ____,  # column with truth
                                 _____, # column with y = 1 preds
                                 event_level = _____ # factor level for y = 1
                               ) 

forested_full_roc
ggplot(forested_full_roc, aes(x = 1 - _______, y = ______)) +
  geom_path() + # draws line
  geom_abline(lty = 3) + # x = y line
  coord_equal() #makes plot square

Model 1 vs. Model 2

lot both ROC curves and articulate how you would use them to compare these models.

First, add a column to each roc data.

forested_custom_roc <- forested_custom_roc |>
  mutate(model = "Custom")

forested_full_roc <- forested_full_roc |>
  mutate(model = "Full")

Next, combine data.

roc_combined <- bind_rows(forested_custom_roc, forested_full_roc) 

Now, plot!

___________ |>
  ggplot(aes(x = 1 - specificity, y = sensitivity, color = model)) +
  geom_path() + # draws line
  geom_abline(lty = 3) + # adds x = y line
  coord_equal() # makes square

The full model looks better. We can quantify this comparison with the area under the curve:

# same as roc_curve, but roc_auc

full_roc_auc <- _______ (
  forested_full_aug, 
  truth = forested, 
  .pred_Yes, 
  event_level = "first"
)

# same as roc_curve, but roc_auc
custom_roc_auc <- _______ (
  forested_custom_aug, 
  truth = forested, 
  .pred_Yes, 
  event_level = "first"
)

full_roc_auc
custom_roc_auc